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NATURAL EQUIVALENCES AND DUALITIES

SIMION BREAZ, GEORGE CIPRIAN MODOI, AND FLAVIU POP

Abstract. The aim of the present survey paper is to present the basic
facts and principles concerning equivalences and dualities induced by
pairs of right adjoint covariant, respectively contravariant, functors.

1. Introduction

The starting point of the study of equivalences, respectively dualities,
between certain full subcategories of module categories was in the 50’s. In
that time Morita [14] and Azumaya [1] proved some important results which
generalizes some classical properties of modules over rings of matrices over
fields, respectively the classical duality theorem for vector spaces. More
precisely, if R and S are unital rings, they proved

i) a right R-module P is finitely generated projective generator in
Mod-R if and only if the covariant functor

Hom(P,−) : Mod-R→ Mod-EndR(P )

is an equivalence;
ii) any equivalence F : Mod-R → Mod-S is representable, i.e. there

exists a finitely generated projective generator P in Mod-R such
that S ∼= EndR(P ) and the functors F and HomR(P,−) are naturally
equivalent functors;

iii) If C ⊆ Mod-R andD ⊆ S-Mod are full subcategories which are closed
under finite products, submodules and epimorphic images such that
S ∈ D then every duality F : C → D is representable, i.e. there exists
an injective cogenerator U for C such that S ∼= EndR(U), U is an
injective cogenerator for S-Mod and the functors F and HomR(−, P )
are naturally equivalent.

During the time, these results were generalized in various ways by many
authors. We refer here to the book [7] and the papers [16], [17], [18] for sur-
veys concerning theories about equivalences or dualities between full subcat-
egories of module categories. Important tools in these theories are (co)tilting
modules and their generalizations. These kind of modules induce some spe-
cial equivalences (dualities) between some natural torsion and torsion-free
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classes. Wisbauer observed in the introduction of [17] that many results
concerning tilting modules can be generalized (using similar techniques) to
locally finitely generated Grothendieck categories. Tilting equivalences in
Grothendieck categories were studied by Colpi [8], Gregorio [13], Castagño-
Iglesias, Gómez-Torrecillas and Wisbauer [5]. Generalization of the tilt-
ing theory for (semi-)abelian categories were obtained by Colpi and Fuller
[10] and by Rump [15]. Recently, a similar program for dualities between
Grothendieck categories was started by Castagño-Iglesias [4].

The aim of the present survey paper is to present the basic facts and
principles concerning this kind of results.

2. Equivalences

Basics. Let A and B be Grothendieck categories and H : AÀ B a covariant
functor which has a left adjoint T. We will denote by φ : TH → 1A,
respectively θ : 1B → HT the natural transformations which correspond
to this pair of adjoint functors. We will say that an object X ∈ A is H-
static if φX is an isomorphism. An object Y ∈ B is H-adstatic if θY is an
isomorphism. If B has an H-adstatic generator B, we will say that the triple
H = (H,T, B) is a right pointed pair of adjoint functors, and we shall speak
of an H-static (adstatic) object rather of an H-static (adstatic) object.

In this section H will denote a right pointed pair of adjoint covariant
functors (H, T, B) between the Grothendieck categories A and B.

We associate to every pair H some important classes of objects:
• Gen(H) = {M ∈ A | φM is an epimorphism}, the class of H-

generated objects,
• Faith(H) = {X ∈ B | θX is a monomorphism}, the class of H-faithful

objects.
Moreover, if X is an object in a Grothendieck category, we will by Cogen(X)
the class (closed with respect isomorphisms) of subobjects of powers of X.
This is the class of all X-cogenerated objects.

Since φT(X)T(θX) = 1T(X) for all X ∈ A and H(φM )θH(M) = 1H(M) for
all M ∈ A (see [19]), we have the inclusions T(B) ⊆ Gen(H) and H(A) ⊆
Faith(H).

Lemma 2.1. For every object Y ∈ B we denote

AnnH(Y ) =
∑
{Z ≤ Y | T(i) = 0, where i : Z → Y denotes the inclusion}.

Then:
i) T(AnnH(Y )) = 0;
ii) AnnH(Y ) = Ker(θY )
iii) AnnH(−) : B → B is a radical.
iv) If Q is a cogenerator for A then Cogen(H(Q)) = Faith(H).

Proof. i) follows from the fact that T commutes with direct limits.
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ii) Let i : Ker(θY ) → Y the inclusion map. Then T(θY )T(i) = 0. But
T (θY ) is a monomorphism, hence T(i) = 0. Then Ker(θY ) ⊆ AnnH(Y ).

Conversely, if Z
i

↪→ Y is a subobject such that T(i) = 0, then θY i =
HT(i)θZ = 0, hence Z ⊆ Ker(θY ).

iii) Let Y ∈ B and i : AnnH(Y/AnnH(Y )) ↪→ Y/AnnH(Y ) be the in-

clusion map, and Z
j

↪→ Y such that Z/AnnH(Y ) = AnnH(Y/AnnH(Y )).
We consider the canonical homomorphisms π : Y → Y/AnnH(Y ) and
ρ : Z → Z/AnnH(Y ). Then T(π)T(j) = T(πj) = T(iρ) = T(i)T(ρ) = 0.
Moreover, since T is right exact, we have an exact sequence

0 = T(AnnH(Y ))→ T(Y )
T(π)→ T(Y/AnnH(Y ))→ 0.

Therefore, T(π) is an isomorphism. It follows that T(j) = 0, hence
AnnH(Y/AnnH(Y )) = 0.

iv) Let M ∈ A. Then there exists a monomorphism 0→M → QI . Since
H is left exact and preserves direct products, we have an exact sequence
0→ H(M)→ H(Q)I , hence H(A) ⊆ Cogen(H(Q)).

Let X ∈ Faith(H). Then θX : X → HT(X) is a monomorphism. Since
H(T(X)) is H(Q)-cogenerated, it follows that X ∈ Cogen(H(Q)), hence
Faith(H) ⊆ Cogen(H(Q)).

Conversely, if X ∈ Cogen(H(Q)) and ι : X → H(Q)I is a monomorphism,
then HT(ι)θX = θH(Q)I ι is a monomorphism, hence θX is a monomorphism.
It follows that Cogen(H(Q)) ⊆ Faith(H). ¤

For every X ∈ A we will denote by TrH(X) the subobject Im(φX).

Lemma 2.2. With the above notations we have:
i) TrH(X) =

∑
f∈HomA(T(B),X) Im(f);

ii) TrH is an idempotent preradical. ¤
Corollary 2.3. An object X ∈ A is H-generated if and only if there exists
an epimorphism T(B)(I) → X for some set I. ¤

An object X ∈ A is H-presented if there exists an exact sequence

0→ U → T(B)→ X → 0

with U ∈ Gen(H). We will denote by Pres(H) the class of all H-presented
modules. Since T is right exact, we have

Lemma 2.4. T(B) ⊆ Pres(H). ¤
w-Σ-exact functors. Let B be a generator for B. We say that the functor
H is w-Σ-exact if it preserves the exactness of all exact sequences 0→ K →
T (B)(I) → L→ 0 in A, with K ∈ Gen(H).

Theorem 2.5. The following are equivalent for a right pointed pair H:
a) H : Pres(H) À Faith(H) : T is an equivalence;
b) i) H preserves direct sums of copies of T(B),
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ii) H preserves the exactness of epimorphisms β : M → N , with
M ∈ Pres(H) and Ker(β) ∈ Gen(H);

c) i) H preserves direct sums of copies of T(B),
ii) H is w-Σ-exact.

Proof. a)⇒b) Since B(I) is H-adstatic for all sets I, we have the natural
isomorphism B(I) ∼= HT(B(I)) ∼= H

(
T(B)(I)

)
.

Let 0→ L→M → N → 0 be an exact sequence such that M ∈ Pres(H)
and L ∈ Gen(H). Then we have two exact sequences 0→ H(L)→ H(M)→
C → 0 and 0 → X → H(N). The last one shows that C ∈ Faith(H), so
it is H-adstatic. Applying the functor T, respectively HT, we obtain the
commutative diagrams

TH(L) −−−−→ TH(M) −−−−→ T(C) −−−−→ 0y
y

y
0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0

,

respectively
C −−−−→ H(N)y

y
HT(C) −−−−→ HTH(N)

.

We observe that T(C)→ N is an isomorphism by snake lemma, showing
that N ∈ ImT ⊆ Pres(H). Moreover HT(C)→ HTH(N) is an isomorphism.
Since the vertical arrows in the second diagram are isomorphisms, the top
arrow in this diagram must be also an isomorphism, thus C = H(N).

b)⇒c) is obvious.
c)⇒a) Let M ∈ Pres(H). Then there exists an exact sequence 0 → L →

T (B)(I) →M → 0 with L ∈ Gen(H), hence the diagram

TH(L) −−−−→ TH(T (B)(I)) −−−−→ TH(M) −−−−→ 0yψL

yψT (B)(I)

yψM

0 −−−−→ L −−−−→ T (B)(I) −−−−→ M −−−−→ 0

is commutative diagram and with exact rows. Since T (B)(I) is H-reflexive
φL is an epimorphism, we deduce that M is H-static.

Let X ∈ Faith(H). Then T(X) ∈ Pres(H), and it follows that it is enough
to prove that X is H-adstatic. First we observe that B(I) is H-adstatic for
all sets I. Let β : B(I) → X → 0 be an epimorphism in B. Then θXβ =
HT(β)θB(I) . By ii), HT(β) is an epimorphism, hence θX is an epimorphism.
Since X ∈ Faith(H), it follows that X is H-adstatic. ¤

?-pairs. We will say that the right pointed pairs of adjoint functors H is a
?-pair if it induces an equivalence

H : Gen(H) À Faith(H) : T
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The following lemma was proved in a more general setting in [8, Lemma
1.5] and [11, Proposition 1.1].

Lemma 2.6. If H is a ?-pair then:
i) T preserves the exactness of a monomorphism α in Faith(H) if and

only if Coker(α) ∈ Faith(H).
ii) H preserves the exactness of an epimorphism β in Gen(H) if and

only if Ker(β) ∈ Gen(H).

Proof. i) can be proved in a dual manner of the proof of a)⇒b) in Theorem
2.5.

ii) The direct implication follows by Theorem 2.5. Conversely, if 0→ L→
M → N → 0 is an exact sequence which stays exact under the application
of H such that M, N ∈ Gen(H) then the snake lemma for the commutative
diagram

TH(L) −−−−→ TH(M) −−−−→ T(H(N)) −−−−→ 0y
y

y
0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0

shows that N ∈ Gen(H). ¤
Theorem 2.7. The following are equivalent for a right pointed pair of ad-
joint functors H = (H, T, B).

a) H is a ?-pair;
b) i) H preserves direct sums of copies of T(B),

ii) Gen(T(B)) = Pres(T(B)),
iii) H respects the exactness of exact sequences in Gen(T(B));

c) i) H preserves direct sums of copies of T(B),
ii) H preserves the exactness of an epimorphism M

α→ N → 0 with
M ∈ Gen(T(B)) if and only if Ker(α) ∈ Gen(T(B)).

Proof. See [5, Theorem 2.2, Theorem 2.4] and [8, Theorem 3.2]. ¤
The following result was proved in [8, Theorem 3.2] and [13, Theorem

2.4].

Proposition 2.8. If H is a ?-pair then φ : TH→ 1A is monic and θ : 1B →
HT is epic. Conversely, if φX is monic for all X ∈ Gen(H) and θY is epic
for all Y ∈ Faith(H) then H is a ?-pair. ¤

An isomorphism closed subclass T of A is a pretorsion class in A if for
each object A ∈ A there exist T ∈ T and a monomorphism µ : T → A
such that every homomorphism α : T ′ → A with T ′ ∈ T factors through µ.
An class F ⊆ A is a pretorsion-free class if it satisfies the dual condition.
Equivalently, T is a pretorsion (pretorsion-free) class if and only if A is
a coreflective (reflective) full subcategory with monic counit (epic unit).
These classes were used by Rump in [15] to study ?-objects in some additive
contexts.
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Proposition 2.9. A right pointed pair H is a ?-pair if and only if Im(T) is
a pretorsion class in A and Im(H) is a pretorsion-free class in B such that
the diagram of categories and functors

A
H

//

²²

B
Too

²²
Im(T)

H
//

OO

Im(H)
Too

OO

is commutative (the vertical arrows represent the (co)units which corre-
spond to the (co)reflective subcategories, respectively) and the restrictions
H : Im(T) ¿ Im(H) : T are equivalences.

Proof. The proposition follows from the fact that the natural transforma-
tions θH : H→ HTH and φT : THT→ T are invertible. The reader can find
details in [15, Proposition 8]. ¤
Quasi-tilting pairs. A ?-pair H is called quasi-tilting if H(Coker(φM )) = 0
for all M ∈ A and T(Ker(θX)) = 0 for all X ∈ B. Quasi-tilting modules
were introduced by Colpi, d’Este and Tonolo in [9].

Proposition 2.10. A ?-pair is a quasi-tilting pair if and only if
(Im(T), Ker(H)) and (Ker(T), Im(H)) are torsion theories.

Proof. Suppose that H is a ?-pair. For every X ∈ B the epimorphism induced
by the pretorsion-free class Im(H) is θX : X → HT(X). So Im(H) is a
torsion-free class if and only if T(Ker(θX)) = 0 for all X ∈ B. A dual
argument shows that Im(T) is a torsion class if and only if H(Coker(φM ) = 0
for all M ∈ A. ¤
Tilting pairs. If C is a full subcategory of an abelian category, we will
denote by C the abelian closure of C, i.e. the closure of C under finite direct
sums, kernels and cokernels. For example, if H is a right pointed pair,
Gen(H) is the closure of Gen(H) with respect subobjects, and Faith(H) is
the closure of Faith(H) with respect quotient objects.

Note that Faith(H) is a Grothendieck category, and that H(A) ⊆
Faith(H). Then we can assume w.l.o.g. that B = Faith(H).

Let H be a right pointed pair of adjoint functors. We say that ?-pair H is
a tilting pair if A = Gen(H).

Theorem 2.11. A right pointed pair of adjoint functors H is a ?-pair if and
only if (H|Gen(T(B)), T, B) is a tilting pair. ¤

Since A is Grothendieck, it has an injective cogenerator, hence there exist
the right derived functors H(n) for H. We will denote by H⊥ = Ker(H′).

We have the following characterization for tilting pairs.

Theorem 2.12. The following are equivalent for a right pointed pair H.
i) H is a tilting pair;
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ii) (1) T(B) is H-small,
(2) H⊥ = Gen(H),
(3) Gen(H) = A.

Proof. i)⇒ii) It is enough to prove (2).
Let M ∈ H⊥. By Gen(H) = A, there exists an exact sequence 0→M →

N → P → 0 such that N,P ∈ Gen(H). This sequence stays exact under F
since F ′(M) = 0. By Lemma 2.6, M ∈ Gen(H).

Let M be an object in Gen(H). Since A has enough injectives, there exists
an exact sequence 0→M → Q→ Q/M → 0 such that Q is injective. Then
H′(Q) = 0, hence we have the exact sequence

0→ H(M)→ H(Q)→ H(Q/M)→ H′(M)→ 0.

But Q ∈ H⊥, hence Q ∈ Gen(H). By Theorem 2.7 the sequence

0→ H(M)→ H(Q)→ H(Q/M)→ 0

is exact, hence M ∈ H⊥.
ii)⇒i) Let

(]) 0→M → N → P → 0
be an exact sequence in A. If M ∈ Gen(H), using (2) we obtain that (])
stays exact under H. Conversely, if H preserves the exactness of (]) and
N ∈ Gen(H) then M ∈ H⊥ = Gen(H). By Theorem 2.7, H is a ?-pair. ¤

Fortunately, if H is a tilting pair, we can construct a “left derived functor”
for T.

Proposition 2.13. [13] Let H be a tilting pair. Then there exists a functor
T′ : B → A such that for every exact sequence 0 → X → Y → Z → 0 in B
we have an exact sequence

0→ T′(X)→ T′(Y )→ T′(Z) δ→ T(X)→ T(Y )→ T(Z)→ 0.

Moreover, T′ is a right adjoint for the first derived functor H′ of H. ¤

Remark 2.14. The functor T′ is constructed in the following way: For ev-
ery X ∈ B, we consider a presentation 0 → Z

α→ Y → X → 0 with
Z, Y ∈ Faith(H). Then T′(X) = Ker(T(α)). Therefore, since T preserves
the exactness of exact sequences in Faith(H), T′(Faith(H)) = 0.

If H is a tilting pair, we will consider the right pointed pair H′ =
(H′, T′, B). Now we can enunciate “the tilting theorem”.

Theorem 2.15. Let H be a tilting pair. Then
(1) H′ is a quasi-tilting pair,
(2) (Im(T), Ker(H)) = (Ker(H′), Im(T′)) is a torsion theory in A,
(3) (Ker(T), Im(H)) = (Im(H′), Ker(T′)) is a torsion theory in B,
(4) H : Im(T) ¿ Im(H) : T and H′ : Ker(H) ¿ Ker(T) : T′ are equiva-

lences.
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Proof. The reader can find complete proofs in [13, Section 3] and [15] (see
also [12]). We present here (as a sample) the proof for the equality Ker(T) =
Im(H′).

Let X ∈ Ker(T). There exists an exact sequence 0 → Z
α→ Y → X → 0

with Z, Y ∈ Faith(H). Then we have an exact sequence

0→ HT′(X)→ HT(Z)→ HT(Y )→ H′(T′(X))→ H′(T(Z)) = 0.

Since H : Gen(H) ¿ Faith(H) : T is an equivalence, X = Coker(α) ∼=
Coker(HT(α)) = H′(T′(X)) (moreover, this isomorphism is natural). Then
Ker(T) ⊆ Im(H′).

If X = H′(L), we consider an exact sequence 0 → L → Q → Q/L → 0
with Q an injective object in A. Then the sequence

TH(Q)→ TH(Q/L)→ TH′(L)→ 0

is exact. H : Gen(H) ¿ Faith(H) : T is an equivalence and Q,Q/L ∈
Gen(FH), it follows that T(H′(L)) = 0. ¤

Representable tilting(?)-pairs. Let H = (H, T, B) be a tilting pair, and
P = T(B). If S is the endomorphism ring of P and T is the endomor-
phism ring of B then there is a ring isomorphism S ∼= T and an equivalence
S-Mod ≈ T -Mod which are induced by H. Moreover, P induces a right
pointed pair HP = (HP , TP , S), where HP = Hom(P,−) : A → S-Mod : TP

are the canonical adjoint functors. A similar pointed pair HB is induced by
B. Therefore, we have commutative diagrams

A H−−−−→ B
HP

y
yHB

S-Mod ≈−−−−→ T -Mod

A T←−−−− B
TP

x
xTB

S-Mod ≈←−−−− T -Mod
Theorem 2.16. Let H be a ?-pair such that P is w-Σ-quasi-projective and
self-small. Then in the diagram

Pres(P )
H

//

HP

²²

Faith(H)
Too

HB

²²
Faith(HP ) ≈

//

TP

OO

Faith(HP )
≈oo

TB

OO

all (functor) arrows are equivalences and this diagram in commutative.

3. Dualities

Right pointed pairs of contravariant functors. Let A and B be
Grothendieck categories and F : AÀ B : G a pair of contravariant functors
which are adjoint on the right, i.e. there are natural isomorphisms

ηX,Y : HomA(X, G(Y ))→ HomB(Y, F(X)) for all X ∈ A and Y ∈ B.
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Then they induce two natural transformations

δ : 1A → GF and ζ : 1B → FG

defined by

δX = η−1
X,F(X)(1F(X)) and ζY = η−1

G(Y ),Y (1G(Y )).

Moreover, we have the identities

F(δX) ◦ ζF(X) = 1F(X) and G(ζY ) ◦ δG(Y ) = 1G(Y ) for all X ∈ A and Y ∈ B.

An object X is called δ (respectively, ζ)-reflexive if δX (respectively, ζX) is
an isomorphism. We will denote by Reflδ (Reflζ) the classes of all objects
X ∈ A (X ∈ B) such that X is an δ-reflexive object (X is an ζ-reflexive
object).

We also fix a ζ-reflexive generator V for B, and the triple D = (F, G, V )
will be called a right pointed pair of contravariant functor. Let Q = G(V ).
Then add(Q) ⊆ Reflδ and add(V ) ⊆ Reflζ . We will denote by Faithδ (re-
spectively, Faithζ) the classes of all objects X ∈ A (respectively, X ∈ B)
such that δX (respectively, ζX) is a monomorphism. We will call the objects
in the classes Faithδ and Faithζ as D-faithful objects.

In this section D will always denote a right pointed pair (F, G, V ) of
contravariant functors.

Lemma 3.1. Let F : AÀ B : G a pair of contravariant functors which are
adjoint on the right. Then

(a) F(A) ⊆ Faithζ and G(B) ⊆ Faithδ.
(b) The classes Faithδ and Faithζ are closed with respect subobjects.
(c) Let X ∈ Reflδ and i : Y → X an subobject such that F(i) is an

epimorphism. Then Y ∈ Reflδ if and only if X/Y ∈ Faithδ.

Proof. (a) It follows from the identities F(δX) ◦ ζF(X) = 1F(X), respectively
G(ζY ) ◦ δG(Y ) = 1G(Y ).

(b) Let X ∈ Faithδ and i : Y → X an subobject of X. The following
diagram is commutative

Y
δY−−−−→ GF(Y )

i

y
yGF(i).

X
δX−−−−→ GF(X)

so we have δX ◦ i = GF(i) ◦ δY . Since δX and i are monomorphisms we
obtain that δY is monomorphism, hence Y ∈ Faithδ. This shows that Faithδ
is closed with respect subobjects.

The proof for Faithζ is similar.

(c) The sequence 0 → Y
i→ X

p→ X/Y → 0 is exact, because i : Y → X
is a monomorphism. Since F(i) is an epimorphism, the sequence

0→ F(X/Y )
F(p)→ F(X)

F(i)→ F(Y )→ 0
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is also exact, hence

0→ GF(Y )
GF(i)→ GF(X)

GF(p)→ GF(X/Y )

is an exact sequence. The conclusion follows applying Snake-Lemma to the
diagram

0 −−−−→ Y
i−−−−→ X

p−−−−→ X/Y −−−−→ 0

δY

y
yδX

yδX/Y

0 −−−−→ GF(Y )
GF(i)−−−−→ GF(X)

GF(p)−−−−→ GF(X/Y )

,

which is commutative and with exact rows. ¤

w-πf -exact functors. We will denote by copδ(Q) the class of all objects
X ∈ A such that there exists an exact sequence 0 → X → Qn → Y → 0
with Y ∈ Faithδ. We will say that F is w-πf -exact if it is exact with respect
exact sequences 0→ X → Qn → Y → 0 with Y ∈ Faithδ.

Corollary 3.2. Let F : A À B : G be a pair of contravariant functors
which are adjoint on the right, V ∈ Reflζ and G(V ) = Q. Suppose that F is
w-πf -exact. Then

(a) copδ(Q) ⊆ Reflδ
(b) F(copδ(Q)) ⊆ gen(V )

Proof. (a) Let X ∈ copδ(Q). There exists an exact sequence

0→ X
f→ Qn g→ Y → 0

with Y ∈ Faithδ. Then, the sequence

0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0

is exact, hence

0→ GF(X)
GF(f)→ GF(Qn)

GF(g)→ GF(Y )

is exact.
Since δ : 1A → GF is a natural transformation, we have the following

diagram

0 −−−−→ X
f−−−−→ Qn g−−−−→ Y −−−−→ 0

δX

y
yδQn

yδY

0 −−−−→ GF(X)
GF(f)−−−−→ GF(Qn)

GF(g)−−−−→ GF(Y )

commutative, with exact sequences. From Snake Lemma we obtain that
X ∈ Reflδ.

(b) Let X ∈ copδ(Q). There is an exact sequence 0→ X
f→ Qn g→ Y → 0

with Y ∈ Faithδ. Then the sequence 0 → F(Y )
F(g)→ F(Qn)

F(f)→ F(X) → 0
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is exact, hence V n → F(X) → 0 is exact (because F(Qn) = F(G(V )n) ∼=
(FG(V ))n ∼= V n). So, we obtain that F(X) ∈ gen(V ). ¤
Theorem 3.3. Let F : AÀ B : G be a pair of contravariant functors which
are adjoint on the right. If V ∈ Reflζ and G(V ) = Q, the following are
equivalent:

(a) F is w-πf -exact.
(b) F : copδ(Q) À gen(V ) ∩ Faithζ : G is a duality.

Proof. (a) ⇒ (b) From Lemma 3.1 a) and Corollary 3.2 b) we have
F(copδ(Q)) ⊆ gen(V ) ∩ Faithζ , hence F is well-defined. From Corollary
3.2a) we obtain that copδ(Q) ⊆ Reflδ.

Let X ∈ gen(V )∩Faithζ . Then there is an epimorphism p : V n → X and

the sequence 0→ Ker(p) i→ V n p→ X → 0 is exact, hence the sequence

0→ G(X)
G(p)→ G(V n)

G(i)→ Im(G(i))→ 0

is exact. Since Im(G(i)) is a subobject of G(Ker(p)) we obtain, by Lemma
3.1, that Im(G(i)) ∈ Faithδ. It follows that G(X) ∈ copδ(Q) (because
G(V n) ∼= Qn), hence G is well-defined.

From (a) we have FG(p) is an epimorphism and from the fact that V is
ζ-reflexive it follows that ζX is an epimorphism. Because X ∈ Faithζ we
have X ∈ Reflζ hence gen(V ) ∩ Faithζ ⊆ Reflζ .

(b) ⇒ (a) Let 0 → X
f→ Qn g→ Y → 0 be an exact sequence with

Y ∈ Faithδ. From (b) we obtain that Im(F(f)) ∈ gen(V ) ∩ Faithζ ⊆ Reflζ ,
hence F(f) is an epimorphism by [3, Lemma 2.2(b)], and it follows that the

sequence 0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0 is exact. ¤
Costar pairs. We say that the pair D is costar if

F : F−1(gen(V )) ∩ Faithδ À gen(V ) ∩ Faithζ : G

is a duality.

Theorem 3.4. The following are equivalent for a pair D:
(a) D is a costar pair;
(b) (1) F : copδ(Q) À gen(V ) ∩ Faithζ : G is a duality and

(2) copδ(Q) = F−1(gen(V )) ∩ Faithδ;
(c) (1) δX is an epimorphism for all X ∈ F−1(gen(V )) and

(2) ζX is an epimorphism for all X ∈ gen(V );
(d) F preserves the exactness of an exact sequence

0→ X → Qn → Y → 0

if and only if Y ∈ Faithδ.

Proof. (a)⇒(b) Let X ∈ F−1(gen(V )) ∩ Faithδ. Then there is an exact

sequence V n f→ F(X)→ 0 hence there is an exact sequence

0→ X
G(f)→ Qn → Qn/X → 0.
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Since X ∈ Reflδ, F(G(f)) is epimorphism (because F(X) ∈ Reflζ) and Qn ∈
Reflδ we obtain, by Lemma 3.1 c), that Qn/X ∈ Faithδ. It follows that
X ∈ copδ(Q) hence F−1(gen(V )) ∩ Faithδ ⊆ copδ(Q).

Let X ∈ copδ(Q). Then there is an exact sequence

0→ X
f→ Qn g→ Y → 0

with Y ∈ Faithδ. Since ImF(f) ∈ gen(V )∩Faithζ ⊆ Reflζ we have, from [3,
Lemma 2.2(b)], that F(f) is an epimorphism, hence

0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0

is exact. It follows that V n → F(X)→ 0 is exact, hence X ∈ F−1(gen(V )).
But X ∈ Faithδ (because f is monomorphism and Qn is δ-reflexive), so we
have X ∈ F−1(gen(V )) ∩ Faithδ, hence copδ(Q) ⊆ F−1(gen(V )) ∩ Faithδ.

Therefore, copδ(Q) = F−1(gen(V )) ∩ Faithδ. Using (a), we obtain that
the pair F : copδ(Q) À gen(V ) ∩ Faithζ : G is a duality.

(b)⇒(a) is obvious.
(b)⇒(c) Let X ∈ F−1(gen(V )). From (b) we have that F(X) is ζ-reflexive,

so F(δX) is an isomorphism. Applying the functor F to the exact sequence

0→ Ker(δX) i→ X
p→ X/Ker(δX)→ 0

we obtain the exact sequence

0→ F(X/Ker(δX)
F(p)→ F(X)

F(i)→ F(Ker(δX)).

Let denote X/Ker(δX) by X. Since F(i) = 0, it follows that F(p) is an
isomorphism hence F(X) ∼= F(X), so X ∈ F−1(gen(V )). Because X ∼=
Im(δX), Im(δX) is a subobject of GF(X) and GF(X) ∈ Faithδ we obtain
that X ∈ Faithδ and it follows, by (b), that δX is an isomorphism.

Therefore δX is an epimorphism, since we have the equality δX ◦ p =
GF(p) ◦ δX , where δX and GF(p) are isomorphisms (recall that F(p) is an
isomorphism) and p is an epimorphism.

Let X ∈ gen(V ). Then there is an epimorphism g : V n → X and the
following diagram is commutative:

V n ζV n−−−−→ FG(V n)

g

y
yFG(g).

X
ζX−−−−→ FG(X).

Because the sequence 0→ Ker(g) i→ V n g→ X → 0 is exact, the sequence

0→ G(X)
G(g)→ Qn G(i)→ Im(G(i))→ 0

is also exact. But Im(G(i)) is a subobject of G(Ker(g)) and G(Ker(g)) ∈
Faithδ hence Im(G(i)) ∈ Faithδ. Since F is w-πf -exact (by Theorem 3.3)
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the sequence

0→ F(Im(G(i)))
FG(i)→ F(Qn)

FG(g)→ FG(X)→ 0

is exact, hence FG(g) is an epimorphism.
Since ζX ◦ g = FG(g) ◦ ζV n , FG(g) is an epimorphism and ζV n is an

isomorphism it follows that ζX is an epimorphism.
(c)⇒(d) Let 0 → X

f→ Qn g→ Y → 0 be an exact sequence. It follows
that the sequence

0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0

is exact. Since F(X) ∈ gen(V ) we have that δX is an epimorphism. The con-
clusion will follow applying the Snake-Lemma to the commutative diagram
with exact rows

0 −−−−→ X
f−−−−→ Qn g−−−−→ Y −−−−→ 0

δX

y
yδQn

yδY

0 −−−−→ GF(X)
GF(f)−−−−→ GF(Qn)

GF(g)−−−−→ GF(Y )

.

Conversely, let 0 → X
f→ Qn g→ Y → 0 be an exact sequence with Y ∈

Faithδ. Since Im(F(f)) ∈ gen(V )∩Faithζ we obtain, by (c), that Im(F(f)) ∈
Reflζ . It follows, from [3, Lemma 2.2(b)], that F(f) is an epimorphism, hence

the sequence 0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0 is exact.
(d)⇒(b) By Theorem 3.3, the pair F : copδ(Q) À gen(V ) ∩ Faithζ : G is

a duality.
Let X ∈ copδ(Q). Then there is an exact sequence 0→ X

f→ Qn g→ Y →
0 with Y ∈ Faithδ. Then the sequence

0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0

is exact and it follows that F (X) ∈ gen(V ). Since f and δQn are monomor-
phisms, δX monomorphism hence X ∈ F−1(gen(V )) ∩ Faithδ.

If X ∈ F−1(gen(V )) ∩ Faithδ, then there exists an epimorphism g :
V n → F(X). Set f := G(g) ◦ δX : X → G(V n). Because δX and

G(g) are monomorphisms the sequence 0 → X
f→ Qn p→ Coker(f) → 0

is exact. Since F(f) = F(δX) ◦ FG(g), F(δX) is an isomorphism (be-
cause F(X) ∈ gen(V ) ∩ Faithζ ⊆ Reflζ) and FG(g) is an epimorphism (by
ζF(X) ◦ g = FG(g) ◦ ζV n), we have that F(f) is an epimorphism. Therefore,

0→ F(Coker(f))
F(p)→ F(Qn)

f→ F(X)→ 0

is an exact sequence. By (d), we obtain Coker(f) ∈ Faithδ and it follows
that X ∈ copδ(Q). ¤
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f-cotilting pairs. The next result describes another kind of dualities in-
duced by right pointed pairs. If it is happens in the classical context of
contravariant functors induced by a module Q, Wisbauer called this module
f -cotilting, [18].

Theorem 3.5. The following are equivalent for a pair D:

(a) F : cog(Q) À gen(V ) ∩ Faithζ : G is a duality;
(b) i) cog(Q) = copδ(Q);

ii) F is w-πf -exact .

Proof. (a)⇒(b) Let 0 → X
f→ Qn g→ Y → 0 be an exact sequence, with

Y ∈ Faithδ. Since ImF(f) ∈ gen(V ) and ImF(f) is a subobject of F(X) we
have that ImF(f) ∈ Reflζ . It follows, from [3, Lemma 2.2(b)], that F(f) is

an epimorphism, hence the sequence 0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0 is
exact. Then (ii) is true.

To prove (i), we consider an object X ∈ cog(Q). Since F(X) ∈ gen(V ) ∩
Faithζ and F is w-πf -exact we have, by Theorem 3.3, GF(X) ∈ copδ(Q).

Then there exists an exact sequence 0→ GF(X)
f→ Qn g→ Y → 0 with Y ∈

Faithδ. Since X ∈ cog(Q) ⊆ Reflδ, the sequence 0 → X
f◦δX→ Qn g→ Y → 0

is exact. Then X ∈ copδ(Q).
The reverse inclusion is obvious.
(b)⇒(a) Let X ∈ cog(Q). Then, by (b), there is an exact sequence

0→ X
f→ Qn g→ Y → 0

such that Y ∈ Faithδ and the sequence

0→ F(Y )
F(g)→ F(Qn)

F(f)→ F(X)→ 0

is exact. Then F(X) ∈ gen(V ). By Lemma 3.1, we have F(X) ∈ Faithδ
hence F is well-defined.

Applying Snake-Lemma to the following commutative diagram

0 −−−−→ X
f−−−−→ Qn g−−−−→ Y −−−−→ 0

δX

y
yδQn

yδY

0 −−−−→ GF(X)
GF(f)−−−−→ GF(Qn)

GF(g)−−−−→ GF(Y )

,

we obtain that X ∈ Reflδ, hence cog(Q) ⊆ Reflδ.

Let X ∈ gen(V ) ∩ Faithζ . Then there is an epimorphism V n f→ X → 0,
hence G(X) ∈ cog(Q). So, G is well-defined.

The sequence 0 → Ker(f) i→ V n f→ X → 0 is exact, hence the sequence

0 → G(X)
G(f)→ G(V n)

G(i)→ Im(G(i)) → 0 is exact. Since Im(G(i)) is a
subobject of G(Ker(f)) it follows, by Lemma 3.1, that Im(G(i)) ∈ Faithδ.
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Because F is w-πf -exact the sequence 0 → F(Im(G(i)))
FG(i)→ FG(V n)

FG(f)→
FG(X)→ 0 is exact, hence FG(f) is an epimorphism.

The diagram

V n ζV n−−−−→ FG(V n)

f

y
yFG(f).

X
ζX−−−−→ FG(X).

is commutative, so ζX ◦ f = FG(f) ◦ ζV n . Since ζX is an epimorphism,
because ζV n and FG(f) are epimorphisms, we have that X ∈ Reflζ , hence
gen(V ) ∩ Faithζ ⊆ Reflζ .

By what we just proved, F : cog(Q) À gen(V )∩Faithζ : G is a duality. ¤

Finitistic self-cotilting modules. The following kind of dualities was
characterized in [2] and [3].

Theorem 3.6. The following are equivalent for a pair D:
a) F : cog(Q) À pres(V ) ∩ Faithζ : G is a duality;
b) i) cog(Q) = cop(Q);

ii) F is exact with respect exact sequences 0→ X → Qn → Y → 0
with Y ∈ cog(Q). ¤
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